[Discovering Sine \& Cosine Transformations]

(a chris mock lesson)
(INTRO)
Today we will be covering section 6.5 out of our book, titled "Graphing Trigonometric Functions". Our goal is to examine how a, b, c, and d in the below function change the graph of sine and cosine.

$$
y=a \sin (b(x-c))+d \& y=a \cos (b(x-c))+d
$$

(SETTING UP)

Our primary method of graphing will be the calculator. Make sure your calculator is in radians, and change your window to $[-3 \pi, 3 \pi, \pi]$ by $[-6,6,1]$. Go ahead and plot the function

$$
y=1 \sin (1(x-0))+0=\sin x
$$

You should get the graph below.

Every sinusoidal graph has an amplitude and a period (wavelength); some are constant, and some vary over the graph's domain - today we focus mainly on the former case.
(DO WORK, SON)
The first thing we'll look at is how changing the value of a changes the graph, so we'll let $b=1, c=$ 0 and $d=0$. Keeping

$$
y=\sin x
$$

In your " $y_{1}=$ " position, graph the following function in your " y_{2} "

$$
y=2 \sin (1(x-0))+0=2 \sin x
$$

Sketch the graph below and record it's amplitude and period.

amplitude:
period:

Now, still keeping your " $y_{1}=\sin x$ " position, graph the following function in your " y_{2} "

$$
y=5 \sin (1(x-0))+0=5 \sin x
$$

Sketch the graph below, record it's amplitude and period.

amplitude:
period:
[question 1] How is the value of a changing the graph of $y=a \sin x$?

The a value also serves a secondary purpose. Still keeping " $y_{1}=\sin x "$, graph " $y_{2}=-\sin x$ ". Describe a's secondary purpose below.

Ok cool, so we have an idea of how the a variable changes the original graph - let's move now to the b variable. For the remainder of this lesson, we will keep

$$
y=\sin x
$$

in the " $y_{1}=$ " position on our calculator.

Graph

$$
y=1 \sin (2(x-0))+0=\sin 2 x
$$

Record it's amplitude and period.

amplitude:
period:

$$
y=1 \sin (3(x-0))+0=\sin 3 x
$$

Record it's amplitude and period.

Graph

$$
y=1 \sin \left(\frac{1}{2}(x-0)\right)+0=\sin \left(\frac{1}{2} x\right)
$$

Record it's amplitude and period.

amplitude:
period:
amplitude:
period:

Now we'll focus on d.

Graph

$$
y=1 \sin (1(x-0))+3=\sin (x)+3
$$

Record it's amplitude and period.

amplitude:
period:

$$
y=1 \sin (1(x-0))-4=\sin (x)-4
$$

Record it's amplitude and period.

amplitude:
period:

Finally, let's examine c's influence (keeping in mind how 'd' changed our graph, what do you expect ' c ' to do?).

Graph

$$
y=1 \sin \left(1\left(x-\frac{\pi}{2}\right)\right)=\sin \left(x-\frac{\pi}{2}\right)
$$

Record it's amplitude and period.

amplitude:
period:

Graph

$$
y=1 \sin \left(1\left(x+\frac{\pi}{4}\right)\right)=\sin \left(x+\frac{\pi}{4}\right)
$$

Record it's amplitude and period.

amplitude:
period:

$$
y=a \sin (b(x-c))+d
$$

Graph

$$
y=4 \sin \left(2\left(x+\frac{\pi}{2}\right)\right)+1
$$

Record it's amplitude and period.

amplitude:
period:

